Nomenclature

Content

NOMENCLATURE	1
NOTES	2
REFERENCES	2
NAMING ORGANIC COMPOUNDS	3
GENERAL NAMING PROCEDURE	3
PRIORITY TABLE OF FUNCTIONAL GROUPS	4
OTHER RULES	4
NAMES FOR CYCLOHEXENE & SUBSTITUTES	5
NAMES FOR ETHENE & SUBSTITUTES	5
ALKYLE OR ISOALKYLE	5
R/S ISOMERISM	6
FACTS	6
HOW TO DECIDE R OR S	7
MESO FORMS	8
CREDITS	9

Notes

In this note following abbreviations will be used.

- 1. Priority: Will be used to state that this form of a chain/structure/substitute has higher priority than the other compounds its compared to.
- 2. [Square brackets] will be used as a reference to other chapters or publications.

References

1. C 3^{rd} = Chemistry 3^{rd} edition by Housecroft & Constable

Naming Organic Compounds

General naming procedure

- 1. Locate the functional group with the highest priority Use the table provided in the next chapter. This group is going to be the end of the name.
- 2. Determine the stem carbon chain and name it. Normally this is the longest chain but, its much more important that the stem chain contains:
 - As many double /triple bonds as possible
 - As many functional groups as possible
- 3. Transform the stem chain name using the double / triple bond names.
- 4. Number the stem carbon chain, giving the highest priority group the lowest number.
- 5. Name all the remaining functional groups and rearrange them alphabetically.
 - Remember to add the numbers of there location corresponding to the stem carbon chain
- 6. Create the final name.

r honry table of randonal groups				
Class	Formula (group)	Prefix	Suffix	
Carboxylic acid	R-COOH	Carboxy-	-carboxylic acid	
			-acid	
Carboxylicacidester	R-COO-R	(R)oxycarbonyl-	-???	
Carboxylicacidamid	$R-CO - NH_2$	Carbomoyl-	-carboxylicacidamid	
Amidines	$R-C(=NH)-NH_2$	Amidino-	-carboxamidine	
Nitrile	R-CN	Cyano-	-nitril	
Aldehydes	R-CHO	Formyl-	-carbaldehyd	
		Oxo-	-al	
Ketones	R-CO-R	Oxo-	-on	
	R_1 -CO- R_2			
Alcohol	R-OH	Hydroxy-	-ol	
Thiols	R-SH	Sulfanyl-	-thiol	
Amines	R-NH ₂	Amino-	-amin	
Ethers	R-O-R	(R)oxy -	-ether	
Alkyner	-C=C-	Alkynyl-	-yn	
Alkener	-C=C-	Alkenyl-	-en	
Alkaner	-C-C-	Alkyl-	-an	
Halogener	Cl, Br, F	Cl, Br, F-	Cannot be suffix	
Nitril	NO ₂	Nitro-	Cannot be suffix	
Alkyl or Aryl	-CH3	Methyl-		
	-C6H5	Phenyl-		
	-CH2-C6H5	Benzyl-		

Priority table of functional groups

Other rules

- 1. If more than one stem (backbone) carbon chain in a molecule has the same length, the one generating fewest substitutes should be used as the stem chain.
- 2. Larger substitutes get lower chain number, coz they have higher priority.
- 3. If a plane of symmetry exists in a molecule with 2 chirale centers this can give rise to a meso form. [See more under R/S isomerism and meso forms]

Names for cyclohexene & substitutes

Names for ethene & substitutes

Alkyle or Isoalkyle

R/S Isomerism

Facts

- Asymmetrical carbon atoms
 - Describes a carbon to which four different atoms or substituents (groups) are bonded, when drawing molecules you mark this with a asterisk *
- Chirality
 - Molecules with one(or more) chirale centers *can* have one (or more) mirror images, this is called chirality

• Physics and chemical properties

- These properties are the same for both mirror images
- Taste and smell can be different
- Optical activity
 - Molecules with chirale centers are optical active, meaning they rotate plane polarized light [C 3rd page 812 chapter 24]
- Names
 - $\mathbf{R} = \text{Rectus} = \text{Clockwise priority(right)}$
 - **S** = Sinister = Counterclockwise(left)
 - D, L, +, do not have anything to do with R or S[See under rotation of plane polarized light]
- Racemic mixture
 - A mixtures of equal amounts of a R and S compound, this solution is not optical active

• Nature versus Labs

- Nature make only one of these forms, there are few exceptions
- Laboratories often produce both forms

How to decide R or S

- 1. Be sure that the molecule has a chiral center
- 2. Priorities the substituents(groups) after the order (H has the lowest priority) $I > Br > Cl > S > F > O > N > COOH > CO > CHO > CH_2OH > CH_3 > H$
- 3. Rotate the molecule so that the lowest priority is turned away from you.
- 4. Now you a looking a something similar to a car wheel with 3 branches, now determine if the other priorities turn clock or counterclockwise
- 5. Name the molecules either R or S accordingly, R or S should be put in a (bracket)
- Examples

Meso forms

- Molecules which contains a plane of symmetry can have a meso form, planes of symmetry derive by dividing a molecule into 2 through the plane of symmetry, getting 2 a like parts.
- Meso compounds are not chiral and have different chemical and physic properties than the enantiomeric pair.
- Examples

plane of symmetry (rotate 180° degress)

Credits

Written by Martin Gyde Poulsen

Thanks to Peter Georg: Priority tables

Hosted by

www.nqrd.dk/naturvidenskab